반응형

전체 글 217

사차함수 중근의 성질 - 2011년 7월 나형 20번 해설

사차함수가 두 개의 중근을 가질 때를 살펴봅시다. 중근을 제외한 나머지 하나의 극값은 두 값의 중점에서의 함숫값입니다. 증명은 간단하니 한 번 빠르게 보도록 해요.! 문제 2011년 7월 나형 20번 h(x)=g(x)-f(x)이므로 h(x)=0의 근은 g(x)=f(x)가 되는 x의 값입니다. 1과 -2에서 접한다고 하였으니 이 둘이 중근이 되겠군요! 어때요, 참 쉽죠? 사차함수의 성질은 삼차보다는 많은 편인데 모두 다 외울 필요는 없고, 앞으로 몇 가지 필수적인 것들만 포스팅 해 둘테니 그 정도는 꼭 익혀두도록 합시다!

유리함수의 평행이동 쉽게 찾는 법

원래는 다 이동해야 하는데, 빨리 찾는 꿀팁 알려 드릴게요. 바로 분모를 0으로 만드는 x의 값을 분자에 대입하시면 됩니다. 먼저 간단한 문제를 풀면서, 어떻게 사용하는 건지 알아보도록 할게요. 다음 중 평행이동해서 y=2/x와 겹치는 함수의 그래프를 찾아보도록 합시다. 어때요 굉장히 쉽죠? 그럼 이게 왜 이렇게 풀 수 있는건지 간단하게 증명을 한 번 해보도록 할게요. 방법은 간단합니다. 표준형을 일반형으로 만드는 과정을 잘 관찰하시면 돼요. * 주의사항 위는 분모의 x 계수가 1일 때이므로, 1이 아닐 때는 분모의 x 계수를 같이 보셔야 합니다. 문제를 같이 풀어볼까요? 사실 ①은 x축 방향으로 평행이동한 모양이 바로 보이기 때문에 쉽습니다. 분모의 계수와 분자에 남은 값을 같이 봐야하는 게 포인트죠...

서로 다른,같은 공을 상자에 넣는 문제

최근에 공을 사람 혹은 상자에 나눠주거나 넣는 문제가 종종 나와서 정리할 겸 올리는 포스팅입니다. 주로 문제 풀이 위주니 한 번 직접 풀어보세요. 문제1 (출처 : 14 수완 적통50p #3) 빨간 구슬 4개와 파란 구슬 5개가 있다. 이 개의 구슬을 세 사람에게 남김없이 나누어 주려고 한다. 세 사람이 각각 적어도 1개의 구슬을 받도록 나누어 주는 경우의 수를 구하시오. 전체를 구한 다음 못 받는 사람이 있는 경우를 제거하면 됩니다. 문제2 (출처 : 2021 나형, 9월 평가원 #29) 흰 공 4개와 검은 공 6개를 세 상자 A,B,C에 남김없이 나누어 넣을 때, 각 상자에 공이 2개 이상씩 들어가도록 나누어 넣는 경우의 수를 구하시오. (단, 같은 색 공끼리는 서로 구별하지 않는다.) 흰 공이 4개..

원 위의 점에서의 접선 빨리 구하는 팁!

원에서 접선은 가장 힘든 부분이죠. 오늘은 그 중에서 그나마 쉽게 구할 수 있는 접선을 배워볼거에요. 바로 원 위의 점에서 그은 접선의 방정식입니다. 우선은 공식을 먼저 증명해주고, 외워서 푸는 과정을 연습해보도록 해요. 기본적으로 접선도 직선이므로 기울기와 지나는 한 점을 알면 구할 수 있습니다. 아래 증명법은 읽어 보시되, 실제로 문제를 풀 때는 결과로 나오는 공식을 반드시 암기해서 바로 푸셔야 합니다. Case1) 중심이 원점이고, 반지름이 r인 원 위의 점 (a,b)에서 그은 접선의 방정식 구하기 그림으로 그리면 대충 이런 모양이죠. 이제 증명 해보겠습니다. 우선 보조선을 그어줍니다. 기본적으로 원에서 '접선'이 나온다고 하면 1) 접점과 중심을 이은 선이 접선과 수직임을 표기 2) 중심부터 접점..

2021년 7월 학평(인천) 확통 30번 상세 해설 - 색별로 공 넣는 문제

2021년 7월 학평(인천) 확률과 통계 30번 문제 상세 해설입니다. 해설이 모두 줄글로 되어있어 가독성이 떨어지는 관계로 그림으로 설명합니다. 우선 A가 흰공을 검은공보다 적게 받으므로 하얀 공을 기준으로 경우 별로 나누어서 세볼 거에요. Case1) A가 하양 1개, 검정 2개 가짐 : 불가 Case2) A가 하양 1개, 검정 3개 가짐 : 불가 같은 논리로 하양 2개, 검정 4개도 안됩니다. Case 3) A가 하양 1개, 검정 4개를 가짐 : 15개 남은 공의 색이 하양과 빨강뿐이므로, 이제 B,C,D에게 각각 하양 1개, 빨강 1개 이상씩 나눠주면 됩니다. 하양과 빨강을 중복조합을 이용하여 나눠줍니다. 즉 B,C,D에게 하얀공과 빨간공을 각각 1개 이상 나눠주는 경우의 수는 18이죠. 그런데 ..

헤론의 공식 증명 (세 변의 길이로 넓이 구하는 방법)

오늘은 삼각형의 세 번의 길이를 알 때 넓이를 바로 구할 수 있는 공식을 알아볼 거에요. 여러분, 이렇게 세 변의 길이가 주어진 삼각형의 넓이를 어떻게 구하시나요? 당연히 높이가 필요하니까 수선의 발을 그려서 구하면 되겠죠? 밑변을 7이 아닌 6으로 두면, 계산이 좀 쉬워집니다만 어쨌든 꽤 복잡하네요. 그렇지만 오늘 배울 헤론의 공식을 안다면? 이렇게 두 줄만에 간단하게 넓이가 구해진답니다! wow! 어떤가요? 벌써 기대되시죠?ㅎㅎ 그럼 우선 헤론의 공식이 뭔지부터 알아보도록 해요. 헤론의 공식 헤론의 공식은 그리스 시대의 수학자 헤론(Heron)의 이름을 따서 만든 공식입니다. 삼각형에서 세 변의 길이를 알 때, 넓이를 구할 수 있는 공식이죠. 증명은 중2,3때 배우는 피타고라스의 정리와 곱셈공식만 사..

함수의 극한 진위판정(참/거짓) 문제

함수의 극한 진위 판정은 거의 대부분의 학생들이 질문하는 영역입니다. 이전에도 한 번 다룬적이 있는데, 오늘은 이 중 함수의 극한의 수렴/발산에 관한 진위판정 문제를 모아서 쭉 풀어볼까 합니다. 이전 포스팅은 아래를 보시면 됩니다. https://ladyang86.tistory.com/40 [함수의 수렴과 연속] 수렴, 발산과 연속, 불연속 진위판정 쉽게 하는 방법 오늘은 함수의 수렴과 연속의 성질들을 쉽게 외우는 방법에 대해 알아보겠습니다. 우리가 고2 내신을 준비하다보면, 진위 판정을 한 번쯤은 해보게 됩니다. 이게 은근 어렵죠. 나중에 좀 더 쓸텐 ladyang86.tistory.com 아래는 모두 수학2에서 다루는 함수를 기준으로 판단하시면 됩니다. 다항함수, 분수함수 - 우선은 요 정도랄까요? ..

루트와 제곱을 절댓값으로 바꾸는 방법 총정리

3-1학기 때 잠깐 배우지만 3-2학기부터 고3때까지 꾸준히 나오는 내용이 있습니다. 바로 오늘 배울 근호 안의 제곱을 절댓값으로 바꾸는 내용이죠. 이 내용은 이해하는 건 어렵지 않은데, 손에 익어서 문제를 풀기까지 연습이 많이 필요합니다. 그렇지만 계속 나오는 내용이니 한 번 제대로 익히고 가도록 해요! 사실 증명은 간단합니다. 근호안에 제곱으로 들어있는 수나 절댓값이나 둘 다 0보다 크거나 같으면 그냥 나오고 음수인 경우에는 -가 붙어 나오죠. 그래서 문제를 풀 때도 이렇게 절댓값으로 푸시면 됩니다. 처음 문제지에서 접할 때는, 숫자 위주로 식이 나오기 때문에 암산으로도 충분히 풀 수 있지만, 학년이 올라갈수록 근호 안이 복잡한 식으로 나오기 때문에 지금 제대로 풀고 가시는 게 좋습니다. 지금부터는 ..

미분계수 공식 정리 (h 등장하는 꼴일 때)

오늘은 미분계수 중, h가 나오는 형태의 공식을 정리해보았습니다. 우선은 그 전에 미분계수에 대한 기본 형태부터 복습해봐요! 순간변화율은 평균변화율의 극한입니다. 그러니 평균변화율에 lim를 붙여서 점을 점점 (a,f(a))로 보내면 됩니다. 그러면 극한값은 a에서의 접선의 기울기가 되겠죠? h가 0으로 갈 때 f(a+h)-f(a)/h = f'(a)가 되는 것은 모양 자체를 암기해주셔야 합니다. 아래와 같이 a의 자리에 다양한 숫자가 들어가도 아- 이게 '미분 계수구나'하고 보일때 까지요. :-) 숫자는 크게 어렵지 않죠? 가끔 0의 경우에는 0을 생략해서 쓰기도 하기 때문에, 당황하지 마시고 아래와 같이 푸시면 됩니다. 그럼 본격적으로 미분계수 공식을 외워봅시다. 사실 도함수 공식을 이용하여 직접 유도..

삼차함수 접선의 개수

오늘은 위치에 따라 삼차함수에 그을 수 있는 접선의 개수에 대해 정리해봅시다. 삼차함수의 접선의 개수는 교육과정에 있는 내용은 아닙니다. 그렇지만, 모의고사 등에 꾸준히 나오고, 내신에서 이 내용을 아느냐/모르느냐에 따라 시간 차이가 많이 나기 때문에 꼭 알아두는게 좋습니다. 접선의 개수를 구할 때는, 삼차함수의 그래프와 변곡점에서의 접선 이 두 가지는 경계로 그려놓고 판단하시면 됩니다. 변곡점이란? 변곡점이라는 용어 자체가 미적분에서 나와서 문과 학생들에게는 좀 생소한 용어죠. 간단하게 설명하자면, 그래프의 오목/볼록이 바뀌는 점입니다. 위로 볼록인 상태에서 아래로 볼록인 상태로 변하거나, 아래로 볼록인 상태에서 위로 볼록인 상태로 변하는 점이죠. 구하는 방법은 삼차함수에서는 두 번 미분해서 0되는 점..

반응형