반응형

고등수학/고등수학(상) 37

세 점의 좌표로 삼각형의 넓이 구하는 공식 (사선공식, 신발끈공식)

학교에서는 안 알려주지만 학원에선 반드시 알려주는 공식들이 있죠. 오늘 다뤄볼 내용은 그 중 하나인 신발끈 공식입니다. 삼각형의 넓이를 구할 때, 세 점의 좌표로 바로 구할 수 있는 방법이에요. 내신에서 빈출되는 유형인데, 서술형으로 나오는 경우에는 문제의 의도와 맞지 않기 때문에 공식 쓰는 걸 인정 안해주는 게 일반적이긴 하죠. 그렇지만, 계산이 맞는지 검증하는 용도로 쓰면 되고, 객관식일 때는 시간을 많이 단축시켜주니 모르면 나만 손해겠죠? 신발끈 공식 위에도 썼지만, 신발끈 공식은 좌표평면 상에서 꼭짓점의 좌표를 알 때 다각형의 면적을 구할 수 있는 방법입니다. 이따 사용방법을 보면 알겠지만, 구할 때 삼각형의 각 꼭짓점의 좌푯값을 교차하여 곱하는 모습이 신발끈을 묶을 때와 같아 이러한 이름이 붙었..

[이차방정식 꿀팁] 역수를 근으로 갖는 방정식 빨리 구하는 방법

오늘은 이차방정식에서 계수를 통해 근을 빨리 구하는 방법을 배워보도록 할게요. 원래는 근과 계수와의 관계를 이용하여 합과, 곱을 구하고 식을 직접 구성하면 됩니다. 그렇지만, 객관식인 경우에는 아래와 같이 바로 구할 수 있어요. 이차방정식의 근이 주어졌을 때, 역수이거나, 부호가 반대이면 계수를 통해 바로 방정식을 구할 수 있답니다. 물론 그냥 외워!!가 아니고, 왜 이런 관계식이 나오는지 설명도 해드릴게요. 그럼 살펴볼까요? 1. 역수를 근으로 갖는 이차방정식 구하기 순서를 거꾸로 써서 정리해볼까요? 괄호를 이용하여 표현해볼게요. 제곱형태를 정리해준다면 이렇게 되겠군요. 아니 이것은..!! 위와 같은 방법을 사용한다면 나머지 한 근도 증명할 수 있습니다. 즉, 계수의 순서를 반대로 쓴 방정식은, 원래 ..

[사차방정식 근의 성질] 복이차식 치환해서 근의 부호로 풀기

사차방정식 중 복이차식 형태의 근을 구해봅시다. 인수분해가 되는 경우에는 그렇게 풀면 됩니다. 그런데 미지수가 섞여 있어서 근의 부호나 실근/허근을 판별해야 하는 경우에는 어떻게 해야 할까요? 복이차식의 경우에는 아래 문제를 하나씩 풀면서 살펴보죠. 대표예제 일차항과 삼차항이 없으니, 치환해서 풀어봅시다. 여기서 조건 3개는 모두 사용해야 합니다. 합과 곱이 양수여도 실수가 아닐 수 있기 때문이죠. 이 참에 이차방정식 근의 분리를 다시 복습하시면 좋습니다. 아래는 연습용으로 실어둔 복이차 다항식 문제입니다. 어떤 조건이 필요한지 써보고 풀어봅시다! 예제1 모든 근이 실수가 되려면, 치환했을 때 두 근이 0보다 크거나 같으면 됩니다. 즉, D>=0, 합>0 곱>=0 세 조건을 쓰면 되죠. 예제2 서로 다른..

[절댓값] 절댓값의 성질 (방정식, 부등식, 함수에 모두 사용됨)

절댓값은 고3때까지 계속 나옵니다. 처음에 배웠던 건 중1인데, 기억이 나시나요? 수학(상)에서는 절댓값 방정식, 부등식이 나오고, 수학(하)에서 절댓값이 포함된 함수의 그래프를 배운 다음, 수학1, 수학2에서 고난도 문제로 항상 나오죠. 그래서 처음부터 제대로 익혀두셔야 합니다. 1. 절댓값의 정의 : 수직선 상에서 원점으로부터의 거리 (따라서 음수일 수 없습니다.) 2. 기호 3. 성질 읽어보면 당연한 것 같지만, 실제로 문제풀이에 사용하면 식이 간단해 지는 경우가 많습니다. 예를 들어 우리가 |x-2|는 쉽게 푸는데 |2-x|는 평소에 풀던 모양이 아니죠? |x-2| = |2-x|이므로 먼저 식을 변형해주고 풀면 됩니다. 3. 절댓값 기호가 들어간 방/부등식 풀기 알고리즘 실제 문제 풀이는 다음에 ..

[삼차방정식의 근] x^3=1의 허근 w의 성질

삼차방정식에서 자주 등장하는 방정식 허근의 성질을 오늘 외워봅시다! 우선 유도과정을 살펴볼까요? 공식이 많으면 하나씩 외우는 것이 헷갈리므로, 과정 자체를 통째로 외우시는 걸 추천합니다. 이차방정식의 두 허근이라는 걸 생각한다면 생각보다 쉽게 외울 수 있습니다. 우선은 w는 삼차와 이차방정식 모두의 근이므로, 방정식에서 x 대신 w를 대입하면 아래와 같은 네 가지 식이 나옵니다. 참고로 w는 오메가(Omega)라고 읽으시면 됩니다. 1. 방정식의 근 여기서 가장 처음 나오는 왜냐하면 거듭제곱해서 1이 나온다는 건, 주기성을 가진다는 뜻이기 때문이죠! 2. 근과 계수와의 관계 두 근의 합은 -1 두 근의 곱은 1이네요. 덩달아 아래와 같은 공식도 유도가 됩니다. 마지막으로 외울 것은 3. 분수식으로의 변형..

[이차방정식, 이차함수] 이차방정식 근의 분리 : 두 근이 p보다 클 때/작을때/사이에 있을 때

이차방정식 근의 분리 문제입니다. 이차함수의 두 근이 모두 양수/음수/부호가 다를 때가 기억 나시나요? 이 때는 쉽게 두 근의 합, 두 근의 곱, 판별식 순으로 보면 됩니다. 이 때, 두 근이 합과 곱이 양수여도 실수 아닌 수가 존재하기 때문에, 절대 판별식 생략하면 안됩니다. (예를 들어 두 근이 허근일 때, 2+i, 2-i일 때 합과 곱이 양수지만, 실근을 갖지 않습니다.) 오늘은 두 근이 모두 특정한 수(p)보다 클때/작을때/사이에 있을 때를 살펴보겠습니다. 역시나 판단 조건이 3개인데, 반드시 함수의 그래프부터 그리고, 함숫값, 판별식, 축의 방정식 순으로 사용해야합니다. * 관련 문제를 풀어볼까요? 풀이에서 가장 중요한 건 이차함수 그래프를 그리는 부분입니다! 한 문제 더 풀어봅시다. 여기까지 ..

반응형